как работает интерфейс мозг компьютер

Нейрокомпьютерные интерфейсы для игр: что известно на сегодняшний день

Относительно недавно сооснователь Valve Гейб Ньюэлл (Gabe Newell) заявил, что человечество уже намного ближе к “Матрице”, чем может показаться. Мы с соавтором решили разобраться, так ли это, и зачем Valve, Facebook и Илон Маск пытаются подключить мозг к компьютеру.

Иллюзия контроля

Нейрокомпьютерный интерфейс (НКИ) или интерфейс «мозг-компьютер» (Brain-computer interface, BCI) – система, созданная для обмена информацией напрямую между мозгом и компьютером. Концепция была описана Джозефом Ликлайдером еще в 1960 году в статье со звучным названием «Симбиоз человека и компьютера» (Man-Computer Symbiosis). Сейчас публикация представляет скорее историческую ценность, а вот активные попытки вступить в такой симбиоз предпринимаются с конца 2000-х годов.

Пожалуй, тогда больше других проявила себя компания NeuroSky, вместе со Square Enix представившая на Tokyo Game Show 2008 игру-доказательство концепта Judecca. В 2009 году NeuroSky даже выпустила коммерческие НКИ-настольные игры, купить которые можно до сих пор, но считывают ли они мозговую активность или эксплуатируют феномен иллюзии контроля – вопрос открытый.

Продукты остальных компаний в основном так и не вышли за пределы конференций, а лидеры игровой индустрии или отмалчивались, или говорили, что не занимаются разработками НКИ.

jrc omd8cigktwnq2oyqst6wqlw
Игры Mindflex и StarWars Force Trainer от NeuroSky пока остаются наиболее успешными BCI-устройствами, несмотря на противоречия.

В 2012 году лаборатория нейрокомпьютерных интерфейсов в Грацком университете Австрии представила НКИ для World of Warcraft. Система работала, но заменить мышь с клавиатурой явно не могла.

image loader
«Обучение» интерфейса и игрока: чтобы связать сигнал от мозга с определенной командой, пользователю требуется сначала подвигать рукой, а во время игры просто подумать об этом движении.

Постепенно стало понятно, что революции не произойдет. Об НКИ подзабыли, но ровно до тех пор, пока знаменитый основатель Valve Гейб Ньюэлл (Gabe Newell) не заявил в вышедшем 18 марта 2020 года интервью, что в компании вовсю ведутся нейробиологические исследования, добавив, что мы намного ближе к «Матрице», чем многие думают. Почти одновременно вышел отчет, согласно которому рынок НКИ к 2027 году будет оцениваться в 2,96 млрд долларов.

О чем не сказал Гейб

Год назад сотрудник Valve, экспериментальный психолог доктор Майк Эмбиндер (Dr. Mike Ambinder), рассказал на Game Developers Conference 2019 о развитии и применениях НКИ. По сравнению с интервью Гейба, его выступление почти никто не заметил, хотя он рассказал о планах компании намного больше.

image loader
Майк в ЭЭГ-хэдсете от OpenBCI – сообщества энтузиастов, разрабатывающих open-source решения для НКИ.

В Valve пока не идут по пути «Матрицы», подключаясь к мозгу напрямую, а используют специальный «шлем» для электроэнцефалографии (ЭЭГ). У этого подхода есть недостатки — а именно шумы и низкая пропускная способность (например, авторы НКИ для World of Warcraft оценили скорость передачи данных в

Источник

Интерфейсы мозг-компьютер: обзор современных достижений

Технология интерфейса мозг-компьютер (ИМК) была впервые разработана как инструмент, обеспечивающий базовое взаимодействие, такое как общения, без движения. В последние несколько лет произошел сдвиг в сторону новых групп пациентов и приложений, таких как помощь пациентам с инсультом в восстановлении движения или помощь нейрохирургам в более точном картировании мозга для более быстрого и безопасного проведения операций.

Рассмотрим детальнее основные виды современных интерфейсов мозг-компьютер. Их можно разделить на четыре основных группы:

Речевые интерфейсы мозг-компьютер

Интерфейсы для управления киборгами (чипирование живых организмов)

Интерфейсы для реабилитации

Речевые интерфейсы

1) ИМК на основе ЭКоГ на основе слухового внимания к естественной речи

Люди, страдающие тяжелыми нейродегенеративными заболеваниями (например, поздней стадией бокового амиотрофического склероза (БАС)), в конечном итоге теряют мышечный контроль и больше не могут жестикулировать или говорить. Недавние исследования показывают, что электрокортикографические (ЭКоГ) сигналы в гамма-диапазоне (т.е. 70–170 Гц) могут использоваться для определения идентичности звуковых речевых стимулов.

В своей работе [1] авторы изучают эту возможность, реализуя систему реального времени на основе BCI2000, которая использует сигналы ЭКоГ для идентификации присутствующего говорящего.

image loader

Задача испытуемого заключалась в том, чтобы выборочно проявить внимание к одному из двух одновременно выступающих говорящих. Авторы смешали две (монофонические) речи в бинауральную презентацию, в которой поток, передаваемый каждому уху, содержал 20% ∶ 80% громкости одного говорящего и 80% ∶ 20% громкости другого, соответственно.

Созданный интерфейс получает звуковой сигнал через микрофон или предварительно загруженный файл. Затем фильтр корреляции сигналов вычисляет значения корреляции, то есть корреляцию между двумя (монофоническими) речами, чтобы определить, на какого говорящего пользователь направляет свое внимание. Наконец, фильтр увеличения обратной связи увеличивает громкость обслуживаемого докладчика и уменьшает громкость другого говорящего, чтобы обеспечить обратную связь с субъектом

2) Распознавание непрерывной речи с помощью интерфейса мозг-компьютер

В исследовании с 7 участниками [2] авторы впервые показали, что непрерывная речь представлена в мозгу как последовательность фонем(звуков). Эти фонемы могут быть декодированы из записей электрокортикографии (ЭКоГ) и позволяют составить произнесенные слова. Все участники перенесли операцию в связи с трудноизлечимой эпилепсией и согласились участвовать в нашем эксперименте. Расположение электродов определялось исключительно исходя из клинических потребностей пациентов.

image loaderРаспознавание отдельных фонем

В эксперименте авторы одновременно записывали ЭКоГ-активность и форму звуковой волны, в то время как участники читали вслух разные тексты, состоящие из детской литературы, фанфиков или политических выступлений. Авторы согласовали нейронные данные по времени с маркировкой фонем, полученных из звуковых данных, с помощью собственного инструментария распознавания речи BioKIT. Это позволило идентифицировать нейронную активность, соответствующую производству каждой фонемы.

Затем авторы объединили фонемное(звуковое) представление корковой активности с языковой информацией, используя технологию автоматического распознавания речи, чтобы реконструировать слова в мысленно произнесенных фразах. Информация о языке включается в процесс декодирования через языковую модель и словарь произношения. Словарь произношения содержит отображения фонемных последовательностей в слова. Языковая модель статистически моделирует синтаксическую и семантическую информацию, предсказывая следующие слова с учетом предшествующих слов.

Результаты показали, что с ограниченным набором слов в словаре интерфейс может восстанавливать полные предложения. На рисунке показаны различные этапы декодирования непрерывно произносимых фраз из нейронных данных.

Например, последовательность воображаемых фонем (звуков)

Интерфейс распознает и произнесёт как

image loader

Моторные интерфейсы

Интерфейс мозг-машина для управления движением пальцев

Электрокортикография (ЭКоГ) широко изучалась для моторного декодирования и контроля сигналов. По сравнению с другими инвазивными и неинвазивными методами нейронной записи, ЭКоГ обеспечивает хороший компромисс между степенью охвата, качеством сигнала и стабильностью сигнала.

Хотя принципы представления движений рук и пальцев в моторной коре не до конца понятны, некоторая степень разделимости может быть обнаружена в сигналах ЭКоГ, записанных с сенсомоторной коры во время движений отдельных пальцев.

Сетка ЭКоГ с высокой плотностью 8 × 16 была имплантирована субдурально в сенсомоторные области 20-летнего мужчины, страдающего трудноизлечимой эпилепсией. Матрица высокой плотности охватывала центральную борозду предполагаемых сенсомоторных областей руки.

image loader

Предварительное картирование высокой гамма-активации на сетке hd-ECoG было выполнено с использованием задачи постукивания пальцем и пассивной вибротактильной стимуляции.

Иерархический классификатор использовался для предсказания того, какой палец двигался, на основе корреляторов гамма движений пальцев. Классификатор сначала произвел двоичную классификацию того, двигается ли палец или нет. Если движение пальца имело место, то выполнялась последующая 5-ступенчатая классификация того, какой палец двигался.

Исследование впервые показало, что сигналы ЭКоГ, записанные с сенсомоторной коры головного мозга человека, могут быть использованы для онлайн-контроля движений отдельных пальцев на подвижной протезной руке. Модель декодирования, использованная в этом исследовании, не требовала длительного периода обучения или изучения нового отображения для управления движениями пальцев. Вместо этого она извлекала информацию из нейронных сигналов, связанных с движениями пальцев, что позволяло естественным образом управлять пальцами протеза. Анализируя точность декодирования нейронных активаций, которые предшествуют временной шкале сенсорной обратной связи, авторы обнаружили, что, вероятно, ИМК может обеспечить индивидуальный контроль пальцев даже при отсутствии сенсорной афферентной информации, например, в случае пациентов с травмами спинного мозга.

Интерфейсы для управления киборгами (чипирование живых организмов)

Авторы работы [4] создали киборга путем хирургического соединения портативного микростимулятора с нервами антенн живого таракана. Применяя специальную микростимуляцию, киборгом можно дистанционно управлять поворотами влево и вправо. Намерение движения может быть получено из человеческого мозга через интерфейс мозг-компьютер. Электроэнцефалография (ЭЭГ) на основе установившегося визуального вызванного потенциала (SSVEP) использовалась для передачи намерений человека. Были разработаны и проведены эксперименты с различными вариантами испытаний для проверки производительности предложенной системы. Результаты экспериментов показали, что средние показатели успешности реакций человеческого ИМК и киборга в одном решении превышали 85%. Киборгом можно было успешно управлять через человеческий мозг, чтобы он мог пройти по заранее заданным дорожкам с 20% успешностью.

image loader

Таракан-киборг был разработан после несложной хирургической операции. Авторы хирургическим путем установили микростимулятор на таракана, вставив три крошечные серебряные иглы (левый, правый, заземляющий электрод) в усики таракана и в грудную клетку. Схема электростимуляции для киборга представляла собой прямоугольный импульс с амплитудой 1,5 В, частотой 50 Гц, коэффициентом заполнения 50% и шириной 500 мс. Такая конфигурация могла вызвать умеренную и правильную реакцию киборгов и, следовательно, гарантировать хорошую производительность онлайн-контроля.

Были созданы три таракана-киборга. В каждом эксперименте таракана помещали на расстоянии около 1,5 м от главного компьютера. Для каждого испытуемого киборга было проведено десять контрольных онлайн-испытаний. Перед онлайн-контролем каждый таракан сначала прошел 120-секундный тренировочный прогон для оптимизации классификатора SSVEP. Между двумя последовательными испытаниями давали 120-секундный отдых, чтобы свести к минимуму эффекты от усталости как у людей, так и у насекомых. Кроме того, в этом исследовании были проведены эксперименты для контрольных групп. Для системы в экспериментах были спроектированы и испытаны два типа трасс: S-образная трасса и трасса для обхода препятствий.

Результаты экспериментов показали, что средний показатель успешности онлайн-экспериментов, достигнутых с этой системой, составил 20% для S-образной дорожки. При использовании трассы с препятствиями вероятность успешного онлайн-контроля может достигать 40%. Демонстрационное видео успешной навигации по S-образному треку:

Интерфейсы для реабилитации

Облегчение восстановления корковой активности на основе ИМК, связанной с началом походки после разовой многоуровневой хирургии при церебральном параличе.

Большинство методов реабилитации после хирургического вмешательства основаны на периферической реорганизации моторного контроля, инициируемой периферической физиотерапией. Однако ЦП поражает в первую очередь структуры мозга. Это говорит о том, что и периферическая нервная система (ПНС), и центральная нервная система (ЦНС) должны быть интегрированы в физиотерапевтическую и когнитивную реабилитационную терапию. Именно такой подход предлагается в этом направлении создания интерфейсов мозг-компьютер.

image loader

image loader

Собственный интерфейс

Для разрабатываемой мною роботизированной руки

image loader

Было решено, в качестве одной из систем управления, попытаться реализовать некое подобие ИМК. Пока что это только двухэлектродный энцефалограф, но в дальнейшем планируется сборка полноценного медицинского энцефалографа.

image loader

Электрическая схема, схема электродов были взяты из работ других пользователей, и не представляют собой каких-либо новаторских решений. Данным устройством удалось считать реакцию на моргание

image loaderИсточники

Источник

Н — нейроинтерфейс: как управлять гаджетами силой мысли

756345472192737

Что такое нейроинтерфейсы и какими они бывают

Нейроинтерфейс или интерфейс «мозг-компьютер» — это название технологии и устройства, которое позволяет передавать информацию из мозга прямо на внешнее устройство. В качестве таких устройств могут выступать смартфон, компьютер, умный дом, протезы и любые другие электронные устройства.

Управление чем-либо силой мысли не подразумевает никакой мистики: нейроинтерфейс просто регистрирует электрическую активность мозга и преображает ее в команды для внешних устройств. Эта технология использовалась еще в прошлом веке — медицинский прибор для электроэнцефалограммы (ЭЭГ) работает именно так.

Существующие нейроинтерфейсы бывают трех видов: неинвазивные, малоинвазивные и инвазивные. Первый тип устройств располагают на поверхности головы — как, например, в VR-играх. Малоинвазивные нейроинтерфейсы находятся на поверхности мозга, а инвазивные вживляют внутрь мозга. Их часто используют в медицине — например, чтобы вернуть подвижность парализованным людям или даже улучшить память.

Будущее интерфейса «мозг-компьютер»

Сейчас самый известный проект среди инвазивных нейроинтерфейсов — Neuralink Илона Маска. Это чип размером меньше монеты, который должен вживляться в мозг и улучшать его работоспособность. Он также сможет передавать музыку и даже позволит носителям общаться телепатически. Пока этот чип тестировался только на животных, в том числе свиньях, — и те перенесли имплантацию успешно.

Стартап Synchron, конкуренты Маска, получил разрешение на тестирование своего мозгового чипа Strentode на людях раньше, чем Neuralink. Их устройство помогает парализованным людям силой мысли управлять компьютером. Если испытания пройдут успешно, продукт может появиться на рынке уже через 3–5 лет. Скорее всего, уже в скором будущем нейроинтерфейсы смогут значительно облегчить жизнь парализованным людям, помочь в борьбе с деменцией и болезнью Альцгеймера.

Источник

Нейроинтерфейсы сегодня

v4ayvrp9j sduy 2oezomr pzbi

Со времён изобретения манипулятора «мышь» прошло полвека, и это по-прежнему один из основных способов взаимодействия человека с компьютером. Я поехал на конференцию в Институт когнитивных нейронаук ВШЭ, чтобы узнать о последних достижениях в области BCI, которая находится за горизонтом, и поэтому так интересна.

Отчет о конференции я переработал в статью для связанного повествования. Какие-то моменты упрощаю и опускаю, а какие-то дополняю из своих наблюдений и отчетов с других мероприятий. Прочитав ее, я надеюсь, у вас появятся общие понимания подходов к BCI и текущего состояния в этой области. За оригинальными трактовками лучше обращаться к оригинальным статьям, к счастью, почти все в открытом доступе.

История

История BCI началась в 1973 году с публикации Toward direct brain-computer communication [1], где Jacques Vidal изложил идеи в коммуникации между человеком и машиной и описал лабораторию по анализу EEG сигнала для таких целей. Спустя десятилетие Wolpaw сфокусировал применение BCI на помощи парализованным людям и описал принципиальную схему BCI [2]:

image loader

Основные реализации BCI давали возможность вводить текст людям c синдромом изоляции. Это были сложные в использовании системы, потому что пользователь должен проходить долгую тренировку [3], в противовес, появились «спеллеры» на основе распознавания P300 — компонента, который возникает в момент, когда человек совершает выбор, которые снизили требования к пользователю [4].

В 90-е тема все более становится известной, особенно с появлением техник машинного обучения [5]. С увеличением надежности BCI люди интересуются расширением применения в новые области.

Thorsten Zander предложил следующую классификацию BCI [6]:

Отдельно стоит рассмотреть вопрос стимуляции мозга, эта тема, хоть и не относится напрямую к BCI, но представляет собой связанную технологию, которая расширяет возможности BCI для контроля.

Также BCI можно классифицировать по способу получения сигнала:

EEG самый распространённый способ получения сигнала, поэтому, если не указано обратное, я имею его в виду по умолчанию.

Активные BCI

Basketparadigm

Это условное обозначение возможности контроля путем активации воображаемых движений. Дело в том, что моторная кора компактно расположена в центре головы, поэтому воображаемые движения разных частей тела хорошо классифицируются и используются для построения BCI. Пользователю, для работы с такими BCI, необходимо мысленно представлять как он совершает движения разными частями тела.

image loader

Для облегчения проведения экспериментов ученые разрабатывают собственные фреймворки, например, BCILAB. С его помощью провели эксперимент, чтобы продемонстрировать скептику возможность управления c помощью воображаемых движений. Результат составил 80% – так себе результат в условиях, когда у человека есть привычные альтернативы, но заслуживает высокой оценки, особенно, для неподготовленного респондента [7].

Этот же подход применили для управления горизонтом для авиасимулятора. Результаты неоднозначные, для 3-х респондентов удалось добиться результата в 94%, еще для 4-х 64% и меньше 60% еще для троих. Успех заключается в том, что первая троица управляла самолетам так же, как это делается штурвалом. Остальные пилоты недостаточно сосредоточились на внутреннем состоянии и совершали мускульные движения, что вносило негативный вклад в управление.

Системы реабилитации

BCI, которые распознают моторные команды, хорошо изучены и уже используются для реабилитации пациентов переживших инсульт: для восстановления разорванных связей необходимых для управления парализованными конечностями. Павел Бобров продемонстрировал результаты клинических испытаний реабилитационного комплекса для восстановления моторных функций рук, которые доказали эффективность использования. Причем, есть значимая разница для пациентов, кто начал реабилитацию спустя месяц и спустя 6 месяцев после инсульта, чем раньше начинается реабилитация, тем лучше эффект. [11]

Глава g.tec Gunter Edlinger рассказал о работе специальных тренажерных залов для реабилитации, интересный момент, что в процесс реабилитации добавлена электростимуляция конечностей, и если выше использовалась электро-механическая установка, то здесь стимуляция током, что снижает стоимость комплекса.

Если добавить в процесс элементы игры и соревнования, вовлечение будет выше, а значит пациент лучше пройдет через реабилитацию. В центре биоэлектрических интерфейсов ВШЭ под руководством Алексея Осадчего разработали прототипы для улучшения процесса реабилитации. На видео демонстрируется прототип системы для двух человек, где они управляют сосудом, выполняя воображаемые моторные команды, пытаясь склонить сосуд в свою сторону:

Или, например, алгоритм распознавания почерка по мышечной активности с помощью компактного массива электродов позволяет реконструировать написанное: [12]
image loader

Вершина в их работе – это работа над BCI в проекте ExoAtlet, который позволяет людям с ограниченными возможностями передвигаться самостоятельно или использовать его для реабилитации.

Инвазивные BCI – это более сложная тема, и сейчас эксперименты проводятся на животных или на людях, которым электроды установлены по медицинским показаниям. Была освещена серия исследований, которая показала, что возможно определять не только единичные компоненты (имеются ввиду все те же вымышленные движения), но и разделять движение, внимание, направление взгляда между собой. Доступна запись аналогичного доклада с конференции в Самаре.

Реактивные BCI

image loader

Классический пример реактивного BCI это «спеллер» на эффекте P300, это «волна», которая появляется в ответ на выбор показанного стимула, ну а в «спеллере», таким стимулом служит определенным образом кодированные символы алфавита или команды. Пользователь должен мысленно взаимодействовать со стимулами, которые показывает система – считать количество вспышек выбранного символа.

Нельзя не упомянуть о проекте Нейрочат, который позволяет общаться людям с ограниченными возможностями:

Пассивные BCI

Базовая идея пассивных BCI – это оценка состояния человека, например, оценка когнитивной нагрузки (workload), она может быть применена в системах обучения, было проведено исследование, чтобы решить эту задачу.

Классификатор тренировали на следующих задачах:

Точность алгоритма составила 70%. Классификатор протестировали на других задачах (умножение, игра в скрембл), и получили аналогичную точность, тем самым подтвердили факт, что можно сделать независимым классификатор от человека и задач. [13]
Эту идею можно применить для контроля хирурга во время операции [14]. Решалась задача определения нагрузки на хирурга во время выполнения разных по сложности манипуляций на тренажере. Система научилась определять каким способом хирург выполняет операцию с высокой точностью.

Еще один вариант – это измерение степени расслабления. На основе состояния посетителя интерактивной инсталляции в «Музее молчания» создавалась живая картина, которая отражала его внутреннее состояние. [15]

b1fd1c12e245a3afe3cd5c854b777876

Пассивные BCI можно использовать и для задач управления, довольно оригинальный подход предоставить человеку не непосредственный контроль за курсором, а лишь право судить о том, движется ли курсор по правильному пути к цели. Эксперимент был проведен на небольших матрицах размером 4х4 и 6х6 точек. Сначала систему тренировали на произвольном движении точки, и задача человека была определять в правильную ли сторону движется точка, далее тестировали в живом режиме и получили, что результат близок к оптимальному пути. [16] Можно посмотреть демонстрацию.

Midas touch problem и E-BCI интерфейсы

Управление курсором с помощью направления взгляда – простая задача, которая решается с помощью eye-tracker’инга (он же видеоокулография). Но в этих интерфейсах есть проблемы, например, непроизвольные движения глаз и проблема выбора, к слову, весьма символично ее называют проблемой прикосновения Мидаса – фригийского царя, любое прикосновение которого, обращало предмет в золото. Применений пассивных BCI позволяет решать эти проблемы.

Подход, где активный BCI использовался для совершения выбора при управлении с помощью eye-tracker’а, известен давно, но не отличается быстродействием. Исследование, где респонденты оценивали разные способы выбора по шкале NASA TLX, показало, что вариант с BCI не быстрее по времени, чем вариант с долгой фиксацией для выбора объекта, но при этом BCI вызывает меньшую степень фрустрации [10].

Дальнейшая работа команды Торстена Цандера показала, что можно отличать сознательную фиксацию на объекте от бессознательной с точностью 90%[17]. Для эксперимента использовалась парадигма «Oddball» – респондент просматривал серию из фигур, содержащих фигуру, которую он хочет выбрать в сочетании с отвлекающими фигурами.

Сергей Шишкин рассказал о улучшении вышеописанного подхода [8]. Существенный плюс их решения – это снижение скорости выбора до 300мс-500мс, что требует очень быстрой классификации, для этого использовали EEGNet [9].

Механизмы внимания – это отдельная тема, которая может расширить области применения BCI и создавать системы для реабилитации пациентов с СДВГ, о базовой идее рассказывает Mehdi Ordikhani в своем Tedtalk

Стимуляция

И целая группа исследований инвазивных интерфейсов от Михаила Лебедева на макаках-резус: был построен интерфейс мозг-компьютер-мозг, который позволял, управляя виртуальными конечностями, получать тактильную обратную связь. Можно подробнее посмотреть отрывок из лекции «Интерфейс между мозгом и компьютером».

Царство Deep Learning

Кроме того, что алгоритмы «глубокого обучения» позволяют добить и так уже высокую точность «машинного обучения», можно отметить то, что люди работают над «обратной задачей». Основываясь на быстрых данных EEG и MEG можно попытаться восстановить реальную активацию нейронов в мозге, которую сейчас показывает, например, метод fMRI, но с очень низким временным разрешением. Можно только порадоваться оптимизму и верить в скорый успех этой работы.

Еще одна проблема BCI на основе EEG или MEG – это то что результаты активности в разных областях мозга для одних и тех же компонент различаются среди пользователей, приходится учить нейросеть для каждого пользователя и задачи, что усложняет работу с системой и делает ее дороже. Тем не менее, здесь возможны изменения с «переносом обучения», когда нейросеть использует данные разных пользователей/в разных задачах и дообучивается онлайн, в результате этап калибровки может быть пропущен. [19]

Hardware

Наконец-то, мы добрались до железок!

Тут важно сказать про 2 момента, с одной стороны, оборудование для BCI довольно громоздкое, человек в нем привлекает внимание, в одном из выступлений были продемонстрированы миниатюрные электроды, такие что человек в них ничем не выделяется. [20]

image loaderimage loader

К сожалению, вставить фото большего размера возможности нет, но вы можете посмотреть через гугл фото.

Несмотря на всю миниатюрность, устанавливать эти электроды не удобно, придется приклеивать каждый отдельный электрод. Для ускорения используют различные приспособления:

w 1 gu1icslpibo8fmai7cdvjj0

Относительно свежая идея – это массивы из электродов CeeGrid, для крепления в области уха, которые одновременно и невидимы, и легко устанавливаются, но существенный минус это ограниченность применения, хотя есть работы, которые показывают, что использовать этот вариант для ERP BCI реально [21].

e1a55eaa0b23cfcad7d4c09217fb2391

И вторая проблема – это необходимость в токопроводящем геле для качественного сигнала, тут показано, что различия допустимые, и использование сухих электродов оправдано [22], но все зависит от количества волос. Над этим вопросом так же работают, например, недавно Florida Research Instruments начала продавать удлинненный сухой электрод (на картинке ниже он слева), который отличается от первоначальной версии большей округлостью пинов и, как вы понимаете, вызывает меньше негативных ощущений у пользователей. Еще более продвинутые варианты – когда сами пины на электродах снабжены амортизацией, благодаря материалу или с помощью пружин (на картинке ниже они в центре и справа).

0jhrt5qmurklbehrlbupoehw07e

Заключение

Распространение BCI в массы не будет быстрым и легким, сейчас открыты весьма ограниченные возможности по пониманию состояний мозга, но прогресс в этой области нельзя игнорировать. Главное, что есть правильная тенденция на снижение стоимости устройств/предоставление устройств по подписке и появление проектов, которые ориентированы на энтузиастов.

Лично меня очень радует то, что среди раскрученных Emotive, MUSE, OpenBCI начинают появляться и российские проекты. На недавнем Нейрофоруме, который прошел в Петербурге, были продемонстрированы:

Расширение доступных устройств делает область интерфейсов привлекательной для изучения и экспериментов. Порог вхождения низкий, всегда можно найти адекватную задачу, а улучшать алгоритмы можно до упора, приобретая новые знания и навыки. Чего я вам и желаю.

Такой я увидел область BCI, посмотрим, что интересного будет в следующем году.

UPD исправлено описание EBCI интерфейсов, по ошибки они были отнесены к активным BCI, что не соответствует действительности

Источник

Поделиться с друзьями
DOMA35.RU