- Типы подшипников в корпусных вентиляторах
- Содержание
- Содержание
- Немного истории
- Подшипник скольжения
- Гидродинамический подшипник
- Подшипники с магнитным центрированием
- Подшипник качения
- Заключение
- Типы подшипников вентилятора корпуса — различия и сравнение
- Подшипники вентилятора
- Различия
- Оптимизация воздушного потока
- Заключительные слова
- Виды подшипников в вентиляторах для компьютера
Типы подшипников в корпусных вентиляторах
Содержание
Содержание
Активное охлаждение компонентов компьютера уже давно ни для кого не является новостью. Пользователи так сильно увлечены воздушными потоками, давлением внутри корпуса, что забывают о том, что не каждый вентилятор подходит на отведенную ему роль в полной мере. И не последнее значение в этом играет тип подшипника вентилятора.
Немного истории
Изначально подшипники выглядели совсем не так как сейчас. Как следует из названия, это то, во что упирается шип.
Простая конструкция за счет малого диаметра оси создает большое отношение плеч рычага и даже большой коэффициент трения не создает существенного противодействия вращению. А что бы износ был как можно меньше, в качестве подшипника используется более твердый материал. Сегодня такая конструкция встречается в механических часах.
Так или иначе прогресс взял свое, и современные конструкции уже более совершенны.
Подшипник скольжения
Традиционный спутник бюджетных вентиляторов. Внешне максимально простая конструкция, состоящая из латунной втулки и стального вала, но в своей работе не так уж и проста.
Небольшая разница в диаметре вала и втулки заполнена маслом. При вращении вала силы трения между валом и маслом нагнетают масло в место соприкосновения вала и втулки, создавая давление масляного клина. Если это давление будет достаточно большим, оно предотвращает контакт вала и втулки.
h — толщина слоя смазки, ω — угловая скорость вращения вала, d — диаметр вала, P — величина нагрузки, s —средний зазор, e — эксцентриситет
Как видно из рисунка слабым местом этого подшипника является то, что давление прилагается только с одной стороны вала — это не способствует гашению вибраций, а даже наоборот вызывает их при малой величине нагрузки.
По мере работы нагрев делает масло более жидким, что уменьшает давление масляного клина. Также нагрев способствует ускорению испарения масла и в итоге вал с втулкой начинает контактировать. При повышении окружающей температуры на 20 градусов срок эксплуатации такого подшипника снижается в 3 раза. То есть, для вентилятора с обычным подшипником скольжения наиболее удачным будет место с низкой температурой. А для уменьшения, микровибраций, которые изнашивают втулку и в итоге становятся слышимыми вибрациями нужна нагрузка на вал. Такие условия в сборке башенного типа актуальны только на фронтальной панели.
По мере усовершенствования этого типа подшипника появились самосмазывающиеся вариации, а также с винтовой нарезкой. Их особенностью является большее количество масла, доступное для смазки, а также некоторое подобие насоса за счет винтовых конструкций, обеспечивающее циркуляцию масла в любом положении.
Использование полиоксиметилена (POM) также идет на пользу. Этот материал частенько используют в редукторах дешевого электроинструмента. Но в данном случае это замена мягкой втулки из медного сплава, которая в редукторе рассыпалась бы моментально. Полимерный материал уменьшает коэффициент сухого трения и появление частиц с абразивными свойствами, которые в свою очередь ускоряют износ.
Все эти ухищрения не устраняют полностью недостатки конструкции подшипника скольжения, хотя и позволяют ему проработать несколько лет даже в неудачном положении. Наиболее живучим будет вентилятор, имеющий защиту IP6X. В нем применяется герметизирующая втулка для защиты от пыли, которая также мешает испаряться и вытекать маслу.
Гидродинамический подшипник
Считается вечным, ведь пока в нем есть масло, вал и втулка не могут соприкоснуться. Это обеспечивается особым профилем либо втулки, либо вала, обеспечивающих повышенное давление в некоторых участках. Обычно это встречные косые углубления на втулке. Их проще выполнить в мягком металле, не нарушая балансировки вала. Но на практике может встретиться все что угодно, щедро сдобренное маркетинговыми названиями.
Как видно по результатам моделирования, повышенное давление действует на вал со всех сторон. За счет этого вал меньше вибрирует и практически исключается контакт со втулкой. Но главная проблема подшипников скольжения — высыхание масла тут тоже присутствует. И добавляется еще одна: в лежачем положении масло, по мере высыхания, либо скопится в масляной камере (при этом некоторые конструкции исключают достаточное поступление масла за счет капиллярного эффекта), либо постепенно будет покидать подшипник через недостаточно герметичное уплотнение вала.
И ко всему этому еще добавляется очень большая восприимчивость к работе на низких оборотах. Давление масла зависит от оборотов, и если они будут недостаточны, то гидродинамический подшипник превращается в обычный подшипник скольжения. Недаром производители зачастую ограничивают нижнюю частоту вращения вентиляторов с гидродинамическими подшипниками в 600 оборотов в минуту. Но даже с таким ограничением пользователи отмечают появление посторонних звуков.
Подшипники с магнитным центрированием
Большая часть вентиляторов пользуется магнитной левитацией за счет притяжения постоянного магнита ротора и полюсов статора. Убедиться в наличии магнитной левитации просто — достаточно вдоль оси потолкать крыльчатку. Она свободно перемещается на некоторое расстояние и тут же возвращается. В вентиляторах с магнитным центрированием добавляют еще один магнит, придающий больше жесткости, и упор оси вала, который может быть выполнен как из пластика, так и из гидродинамического подшипника.
Дополнительная жесткость уменьшает вибрацию вала на низких оборотах и позволяет гидродинамическому подшипнику работать на любых оборотах и в любом положении.
Подшипник качения
Как можно понять из названия, принцип его работы основан на качении. Чем тверже материал, меньше шероховатость поверхности и точнее детали, тем дольше прослужит такой подшипник. Чем ниже рабочие обороты в подшипнике качения, тем дольше он проработает (даже в перерасчете на суммарное количество оборотов).
Ориентация в пространстве на работе никак не сказывается, поэтому вентиляторы на его основе можно применять в любой части сборки.
Но такой подшипник шумный, что делает его применение на низких оборотах бессмысленной затеей, и с течением времени создаваемый шум растет постепенно. Наиболее долговечная разновидность выполняется из керамики.
А самую тихую модификацию без сепаратора, в которой шарики не создают шума постукиванием друг о друга, скорее всего в компьютерных вентиляторах мы никогда и не увидим.
Заключение
Подшипники компьютерных вентиляторов имеют свои слабые и сильные стороны, учитывая которые можно избежать ускоренной поломки и бессмысленных трат.
Обычный подшипник скольжения дешевый, быстро выходит из строя, но на фронтальной панели может прослужить вполне долго.
Самосмазывающиеся подшипники, особенно с применением пластика (POM) и класса защиты IP6Х могут работать в любой части сборки, не уступая в долговечности другим типам.
Гидродинамический подшипник в самом простом исполнении даже капризнее чем обычный подшипник скольжения. Оптимальным будет использование на оборотах, близких к максимальным, если избегать «лежачего» положения.
Магнитное центрирование позволяет гидродинамическим подшипникам работать в любом положении и оборотах.
Подшипник качения самый надежный, но шумный. Зачастую заранее предупреждает о своей грядущей поломке повышенным шумом, что позволяет избежать внезапной остановки.
Типы подшипников вентилятора корпуса — различия и сравнение
Оптимизация воздушного потока вашего ПК — одна из самых важных задач в процессе сборки ПК. К сожалению, именно им слишком легко пренебрегают начинающие строители. Воздушное охлаждение по-прежнему является наиболее эффективным и экономичным способом охлаждения компонентов вашего ПК, и воздушный поток в корпусе играет жизненно важную роль в производительности воздушного охлаждения ваших радиаторов и видеокарт в корпусе. Эта тенденция продолжается и с жидкостными охладителями, поскольку радиаторам этих охладителей также требуется много воздуха, проходящего через них, чтобы эффективно выполнять свою функцию.
Вот тут-то и пригодятся корпусные вентиляторы. Не только корпусные вентиляторы являются одними из самых важных компонентов любой сборки ПК, но и одними из самых недооцененных компонентов. Начинающие строители, а также энтузиасты могут впасть в плохую идею сэкономить несколько долларов на корпусных вентиляторах, купив дешевые качественные вентиляторы или купив меньше вентиляторов, чем им нужно. Высококачественные корпусные вентиляторы стоят немного дороже, но зачастую именно они обеспечивают высочайшую производительность, самый низкий уровень шума и длительный срок службы. Тип подшипника корпусных вентиляторов играет важную роль во всех трех этих параметрах, и перед принятием решения о покупке важно знать различия между этими тремя типами подшипников.
Подшипники вентилятора
Так что же это за подшипники? Чтобы понять это, мы сначала должны проанализировать анатомию самого вентилятора. Поскольку это относительно простой компонент, под капотом не так уж много всего происходит. Вентилятор работает с помощью ротора, который вращается на подшипнике, вытесняя воздух. Чтобы вентилятор был надежным, в его конструкции чрезвычайно важна функция подшипника. Это связано с тем, что вентилятор может вращаться тысячи раз в минуту, и при каждом обороте подшипник подвергается большим нагрузкам. Кроме того, предполагается, что вентилятор прослужит много лет. Это может означать сотни тысяч оборотов вентилятора, и подшипники внутри должны поддерживать такой уровень производительности.
Вентиляторы используют подшипники для обеспечения эффективного вращения лопастей — Изображение: GamersNexus
Когда мы говорим о подшипниках вентилятора, мы должны помнить несколько вещей. Во-первых, мы должны понять, какой тип подшипника использует вентилятор. Это могут быть подшипники скольжения, шарики и гидродинамические подшипники с небольшими вариациями. После этого вы должны посмотреть на срок службы вентилятора относительно подшипников, которые используются внутри него. Кроме того, необходимо учитывать уровень шума, создаваемый вентиляторами, который определит, правильно ли выполняет свою работу подшипник и с каким уровнем препятствий обычно сталкивается двигатель. Установочная ориентация вентиляторов также может быть предметом рассмотрения в некоторых вентиляторах с подшипниками скольжения, поскольку существуют определенные различия, которые наблюдались в сроке службы этих вентиляторов в зависимости от их ориентации.
Вот различные типы подшипников и принципы их работы.
Центральный вал вентилятора с подшипником скольжения заключен в конструкцию, напоминающую втулку, отсюда и название. Масло используется для смазки и облегчения вращения. Втулка обеспечивает удержание ротора в правильном положении, а также сохраняет зазор между ротором и статором. Кроме того, втулка обеспечивает определенную защиту вала.
Механизм подшипника скольжения — Изображение: CuiDevices
Вентиляторы с подшипниками скольжения обычно недорогие, простые и довольно прочные. Это означает, что эти вентиляторы используются в большом количестве приложений. Они просты по конструкции, а это значит, что они менее склонны к сбоям. Вентиляторы с подшипниками скольжения также довольно прочные, что означает, что они могут работать в суровых условиях и, следовательно, могут применяться во многих промышленных областях. Вентиляторы с подшипниками скольжения также являются одними из самых тихих вентиляторов, что всегда приятно, когда речь идет о корпусных вентиляторах. Благодаря своей простой природе они часто используются в небольших игрушках или гаджетах.
Вентиляторы с подшипниками скольжения также являются наиболее распространенным типом корпусных вентиляторов в компьютерном мире. Они доступны по цене, просты в изготовлении, имеют тихий звуковой профиль и имеют разумный срок службы около 40 000 часов (при 60 ° C). Они действительно имеют тенденцию создавать жужжащие шумы по линии, когда они установлены в горизонтальном положении. Вот почему вентиляторы с подшипниками скольжения лучше всего устанавливать в вертикальном положении, причиной этого исключения является система смазки.
Есть также некоторые аспекты, касающиеся вентиляторов с подшипниками скольжения. Эти вентиляторы имеют тенденцию к катастрофическому отказу и часто без предупреждения. Они также могут сразу выйти из строя при температурах выше 70 ° C из-за организации их системы смазки. Как упоминалось ранее, они действительно сильно изнашиваются при установке в невертикальном положении.
Конструкция вентилятора с шарикоподшипником — это способ устранить некоторые недостатки конструкции вентилятора с подшипником скольжения. В вентиляторах с шарикоподшипниками используется кольцо из шариков вокруг вала для решения проблем, связанных с колебаниями ротора и неравномерным износом. Подшипники обеспечивают меньшее трение по сравнению с конструкциями втулки, а пружины могут помочь при любом наклоне вентилятора, который может быть вызван весом ротора. Большинство двигателей вентиляторов имеют два подшипника, разделенных пружинами. Если пружины полностью расположены вокруг вала, устройство может работать под любым углом или ориентацией, что обеспечивает более надежную конструкцию.
Механизм шарикоподшипникового вентилятора — Изображение: CuiDevices
Как правило, вентиляторы с шарикоподшипниками менее подвержены износу и могут работать при более высоких температурах в любой ориентации. Однако вентиляторы на шарикоподшипниках дороже в производстве из-за их немного более сложной конструкции и, следовательно, менее надежны. Они также немного шумнее по сравнению с вентиляторами с подшипниками скольжения. Вентиляторы на шарикоподшипниках широко используются в промышленных приложениях, таких как воздуходувки для промышленных осушителей или в системах охлаждения электронных компонентов. Охлаждаемые серверные и корпоративные приложения, как правило, отдают предпочтение вентиляторам с шарикоподшипниками из-за их производительности и долговечности.
Благодаря передовой конструкции шарикоподшипники служат значительно дольше, чем вентиляторы с подшипниками скольжения, в среднем около 60-75 тыс. Часов (при 60 ° C) по сравнению с 40 тыс. Вентиляторов с подшипниками скольжения. Шариковые подшипники также лучше переносят более высокие температуры, чем подшипники скольжения. Их также можно установить в любой ориентации, не опасаясь ухудшения характеристик. В вентиляторах на шарикоподшипниках используется система точечных подшипников, а не линейного контакта, что обеспечивает меньшее трение. Однако они немного громче, как упоминалось ранее, и их система смазки со временем может медленно выходить из строя, вызывая постепенное увеличение шума.
Гидравлические подшипники — это, по сути, модифицированная версия конструкции подшипников скольжения. Они используют собственное вращение вентилятора для стабилизации вентилятора и значительного улучшения смазочных характеристик, что приводит к чрезвычайно тихому вентилятору с длительным сроком службы.
В жидкостных подшипниках используется технология циркуляции жидкости, и в результате они обеспечивают самый низкий уровень шума среди всех типов подшипников, обсуждаемых здесь. Они также имеют большой срок службы, так как эти подшипники имеют самый высокий ожидаемый срок службы из всех типов подшипников, перечисленных здесь. Срок службы гидравлических подшипников может составлять от 100 000 часов на нижнем уровне (40-70 ° C) до более 300 000 часов, что является очень долгим сроком для вращающегося вентилятора.
Пример гидродинамических подшипников для жидкости — Изображение: НАСА
Вентиляторы, использующие гидродинамические установки, работают очень тихо на протяжении всего срока службы. Они также могут быть установлены в любом направлении и не имеют осевых предпочтений, как втулочные вентиляторы. Более того, гидродинамические подшипники обычно предпочтительны для обеспечения устойчивости и относительной тишины в высокопроизводительных ПК и машинах такого типа. Они также могут выдвигать такой же или больше воздуха (в CFM), как и любые другие вентиляторы своего класса. Это делает подшипники гидродинамических вентиляторов лучшими во всех сферах.
Однако у этой технологии есть существенный недостаток. Гидродинамические вентиляторы немного дороже, чем сопоставимые вентиляторы, использующие другие технологии. Это может означать несколько долларов здесь и там на потребительском уровне, что является хорошей сделкой для вентилятора с долгим сроком службы и бесшумной работы. Однако на промышленном уровне история может быть немного иной.
Различия
Основные различия между этими тремя типами подшипников заключаются не в их характеристиках вентилятора, а, главным образом, в уровне шума, сроке службы и цене. Внизу стойки расположены вентиляторы на подшипниках скольжения. Эти вентиляторы, как правило, имеют разумный срок службы, ничем не примечательны, бесшумны в начале своего срока службы и действительно доступны по цене, поэтому большая часть рынка вентиляторов для корпусов ПК по-прежнему использует эту конструкцию подшипников.
Следующими на очереди у нас есть вентиляторы с шарикоподшипниками, которые значительно увеличивают срок службы вентиляторов с подшипниками скольжения, но они, как правило, немного громче и немного дороже. Наконец, у нас есть вентиляторы с жидкостными подшипниками, которые имеют самый низкий уровень шума и самый продолжительный срок службы среди всех трех, но также имеют тенденцию быть более дорогими, чем любой из вышеупомянутых типов подшипников.
Выбор конкретного варианта подшипника вентилятора зависит также от выбора вашего корпуса. Если в вашем корпусе есть вентиляторы размером 140 мм и больше, вы не должны испытывать недопустимого уровня шума и, следовательно, можете купить вентиляторы с подшипниками скольжения или шарикоподшипниками. Однако, если у вас есть доступный корпус и вы ограничены несколькими 120-миллиметровыми вентиляторами, то, вероятно, стоит инвестировать в вентиляторы с жидкостными подшипниками, чтобы увеличить срок службы и снизить уровень шума. В какой-то момент вы действительно получаете убывающую отдачу, поэтому было бы разумно сбалансировать бюджет корпуса с вентиляторами вместе, чтобы в конечном итоге вы не тратили больше на вентиляторы с жидкостными подшипниками, чем на фактический корпус.
Оптимизация воздушного потока
Настройка воздушного потока в корпусе — чрезвычайно важная часть сборки ПК, и вентиляторы корпуса играют в них очень важную роль. Во-первых, вы должны решить, какое давление вы хотите создать в системе. Большинство энтузиастов ПК склоняются к положительному давлению, которое уменьшает накопление пыли в ПК и, как правило, также обеспечивает лучшие термические характеристики.
Для создания положительного давления внутри системы количество приточных вентиляторов должно быть больше, чем количество вытяжных вентиляторов в системе. Системы с отрицательным давлением имеют больше вытяжных вентиляторов, чем впускных, и это тоже может быть хорошей конфигурацией при определенных условиях. Отрицательное давление имеет огромный недостаток в виде накопления пыли из-за того, что воздух нагнетается в корпус через небольшие укромные уголки и щели, поэтому накопление пыли является довольно серьезной проблемой.
Положительное и отрицательное давление корпуса — Изображение: HotHardware
Кроме того, корпусные вентиляторы следует выбирать в соответствии с вашими потребностями. На рынке есть две основные категории поклонников ПК. К ним относятся вентиляторы, ориентированные на воздушный поток, и вентиляторы статического давления. Вентиляторы, ориентированные на воздушный поток, лучше подходят для вентиляции корпуса, поскольку они способны перемещать большое количество воздуха, не становясь слишком громким, если у них один из лучших типов подшипников. Вентиляторы статического давления предназначены для установки на радиаторах для водяного охлаждения, поскольку радиаторы являются полупроницаемыми препятствиями на пути воздушного потока. Установка обычных корпусных вентиляторов, ориентированных на воздушный поток, на радиаторе может привести к утечке воздуха по бокам радиатора, поскольку у вентилятора недостаточно статического давления, чтобы протолкнуть воздух через ребра радиатора. Эти факторы необходимо учитывать, прежде чем принимать решение о покупке вентилятора ПК. Кроме того, в этом отношении может быть полезен рекомендуемый нами выбор вентиляторов для корпуса ПК.
Заключительные слова
В вентиляторах ПК используется система подшипников, обеспечивающая эффективную и бесперебойную работу движущихся лопастей вентиляторов. Сегодня в различных продуктах, представленных на рынке, доступны три распространенных типа подшипников, и прежде чем принимать решение о покупке, важно понять различия между ними. В то время как базовые вентиляторы с подшипниками скольжения могут подходить для большинства сборок ПК и других применений, покупатели могут захотеть перейти на вентиляторы с шарикоподшипниками или жидкостными подшипниками по более высокой цене, если им нужны лучшие акустические характеристики и более длительный срок службы вентилятора.
Виды подшипников в вентиляторах для компьютера
Время работы заявлено: до 35 000 час
Время работы реально: до 17 000 час
Это самый простой тип подшипников. Состоит из втулки, покрытой антифрикционным материалом, внутри которой вращается вал.
Время работы заявлено: до 70 000 час
Время работы реально: до 35 000 час
Подшипник скольжения с нарезами на втулке и оси, что обеспечивает рециркуляцию смазывающей жидкости.
Время работы заявлено: до 80 000 час
Время работы реально: до 40 000 час
Усовершенствованный подшипник скольжения, в котором вращение вала происходит в слое жидкости, постоянно удерживающейся внутри втулки за счёт создающейся при работе разницы давлений.
Время работы заявлено: от 160 000 час и выше
Время работы реально: от 160 000 час и выше
Практически, бесконтактный механизм, основанный на принципе магнитной левитации..
Время работы от 60 000 час до 90 000 час
Из всех типов подшипников качения в кулерах применяются только радиальные шарикоподшипники, состоящие из двух колец, тел качения (собственно шариков) и сепаратора.
Время работы заявлено: до 160 000 час
Время работы реально: до 160 000 час
Подшипник качения с использованием керамических материалов.
Время работы заявлено: до 160 000 час
Время работы реально: до 160 000 час
Усовершенствованный гидродинамический подшипник. Отличается увеличенным слоем жидкости (смазки) Для уменьшения износа вал центрируется установленным в основание постоянным магнитом.
Время работы заявлено: до 160 000 час
Время работы реально: до 160 000 час
Усовершенствованный подшипник скольжения. Имеет защиту от пыли, соответствующую IP6X, и специальный слот для восстановленного масла, которые увеличивают срок службы вентилятора.
Подшипник с полиоксиметиленом (POM Bearing)
Время работы заявлено: до 160 000 час
Усовершенствованный подшипник скольжения. Для увеличения срока службы вал покрыт полиоксиметиле́ном, обладающим пониженным коэффициентом трения скольжения.
Время работы заявлено:
до 200 000 час при 20°C
до 110 000 час при 70°C
Компания CUI разработала новый тип вентилятора, который устраняет разрыв между традиционными конструкциями на основе шарикоподшипников и подшипников скольжения. Новая конструкция подшипника, известная как система omniCOOL, использует магнитную подвеску для балансировки ротора в сочетании с усовершенствованным подшипником скольжения.
Ротор в системе omniCOOL работает как волчок, который никогда не падает и может работать под любым углом.
Система omniCOOL уменьшает или устраняет многие недостатки традиционных втулок или шариковых подшипников. Например, магнитная структура, активно уравновешивающая ротор, сводит к минимуму проблемы наклона и колебания, характерные для стандартных подшипников скольжения. И поскольку вал не опирается на внутреннюю часть подшипника, трение между ними значительно ниже, чем у традиционного подшипника скольжения.
Втулка, используемая в системе omniCOOL, специально закалена, чтобы противостоять истиранию и нагреву. Это позволяет работать при температуре до 90°C, в то время как традиционные подшипники скольжения обычно могут выдерживать температуру только до 70°C.
ВЫВОД: Как показала практика, несмотря на широчайшее разнообразие существующих типов подшипников, наибольший акустически комфорт предоставляют гидродинамические подшипники и их развитие. Лишь они обеспечивают одинаковый уровень шума весь срок эксплуатации.